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AN EFFICIENT SPECTRAL METHOD FOR ORDINARY 
DIFFERENTIAL EQUATIONS WITH RATIONAL FUNCTION 

COEFFICIENTS 

EVANGELOS A. COUTSIAS, THOMAS HAGSTROM, AND DAVID TORRES 

ABSTRACT. We present some relations that allow the efficient approximate in- 
version of linear differential operators with rational function coefficients. We 
employ expansions in terms of a large class of orthogonal polynomial fami- 
lies, including all the classical orthogonal polynomials. These families obey 
a simple 3-term recurrence relation for differentiation, which implies that on 
an appropriately restricted domain the differentiation operator has a unique 
banded inverse. The inverse is an integration operator for the family, and it 
is simply the tridiagonal coefficient matrix for the recurrence. Since in these 
families convolution operators (i.e., matrix representations of multiplication by 
a function) are banded for polynomials, we are able to obtain a banded repre- 
sentation for linear differential operators with rational coefficients. This leads 
to a method of solution of initial or boundary value problems that, besides 
having an operation count that scales linearly with the order of truncation N, 
is computationally well conditioned. Among the applications considered is the 
use of rational maps for the resolution of sharp interior layers. 

1. INTRODUCTION 

The solution of constant-coefficient ordinary differential equations with periodic 
boundary conditions is especially simple in the Fourier spectral representation, since 
differentiation of a smooth function is replaced by multiplication of its Fourier co- 
efficient vector by a diagonal matrix. An analogous property is shared by Hermite 
polynomial expansions in unbounded domains. Other spectral representations give, 
in general, almost full triangular differentiation matrices. However, for polyno- 
mial families such as the Chebyshev and Legendre, the matrices representing some 
commonly occurring operators, such as the Laplace operator in various separable 
geometries, are known to be reducible to simple, banded form through the use of 
appropriate banded preconditioners ([12, Ch. 10], [9, 18]). The origin of most of 
such simplifications is found in the fact that the matrix operator for integration in 
any of the classical orthogonal polynomial families is tridiagonal [8]. 

@)1996 American Mathematical Society 

611 

Received by the editor August 9, 1994 and, in revised form, February 12, 1995. 
1991 Mathematics Subject Classification. Primary 65Q05, 65L60, 65P05, 76M25, 33A45, 

33C55, 33C45. 
Key words and phrases. Spectral methods, orthogonal polynomials, boundary value problems. 
Part of the work of the first author was performed at Ris0 National Laboratory, DK-4000 

Roskilde, Denmark. All authors supported in part by DOE Grant DE-FG03-92ER25128. 
The work of the second author was partially supported by NSF Grants DMS-9108072, DMS- 

9304406 and by ICOMP, NASA Lewis Res. Ctr., Cleveland, OH, USA. 



612 EVANGELOS A. COUTSIAS, THOMAS HAGSTROM, AND DAVID TORRES 

In this article we show how to exploit the properties of the operator of integration 
for arbitrary classical orthogonal polynomial families to arrive at efficient spectral 
algorithms for the approximate solution of a large class of ordinary differential 
equations of the form 

n 

(1) Lu = Z(mn-k(x)Dk)U f(x) , x E Q = (a, b), 
k=O 

subject to the constraints 
Tu =c 

where mk are rational functions of x, Dk denotes kth-order differentiation with 
respect to x, T is a linear functional of rank n, and c E Rn. (Typically, the 
constraints are boundary or initial conditions, but this is not necessary.) 

We must mention that the basic idea of the method presented here was first intro- 
duced by Clenshaw [6]. He realized that solving for the highest derivative present in 
a given ordinary differential equation leads to banded forms for Chebyshev Galerkin 
discretizations for ODEs with low-order polynomial coefficients, which then he 
solved by backward recurrence relations. The method is further discussed in the 
monograph by Fox and Parker [11], again for the Chebyshev polynomials. Among 
our main contributions are the development of an efficiently implementable algo- 
rithm for general, nonsingular problems in arbitrary classical orthogonal polynomial 
bases, together with its conditioning and convergence analysis, and the application 
to the resolution of sharp layers through rational maps. We present now the basic 
description of our method, followed by an outline of the rest of the paper. 

The problem of approximating solutions of Ordinary or Partial Differential Equa- 
tions (O or PDE) by spectral methods, known as Galerkin approximation, involves 
the projection onto the span of some appropriate set of basis functions, typically 
arising as the eigenfunctions of a singular Sturm-Liouville (SL) problem. The mem- 
bers of the basis may satisfy automatically the auxiliary conditions imposed on the 
problem, such as initial, boundary or more general conditions. Alternatively, these 
conditions may be imposed as constraints on the expansion coefficients, as in the 
Lanczos r-method [15]. 

It is well known [5] that the eigenfunctions of certain singular Sturm-Liouville 
problems allow the approximation of functions in C' [a, b] whose truncation error 
approaches zero faster than any negative power of the number of basis functions 
(modes) used in the approximation, as that number (order of truncation N) tends 
to oo . This phenomenon is usually referred to as 'spectral accuracy' [12]. The 
accuracy of derivatives obtained by direct, term-by-term differentiation of such 
truncated expansions naturally deteriorates [5], but for low-order derivatives and 
sufficiently high-order truncations this deterioration is negligible, compared to the 
restrictions in accuracy introduced by typical difference approximations. Since 
results on the accuracy of spectral methods are well documented in the literature, 
we shall limit ourselves to the discussion of certain formal properties of orthogonal 
polynomial families, which allow algorithmic simplifications in their use. Facts 
about orthogonal polynomials that we shall need can be found in any of the standard 
references (e.g. [16, 19]). 

Throughout, we assume that we are working with a family of polynomials {Qk}o 

which are orthogonal and complete over the interval (a, b) (here a and/or b can be 
infinite) with respect to the nonnegative weight w(x). In the cases of interest, these 
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are the eigenfunctions of a Sturm-Liouville problem 

(2) (p(x)Q)' + AkW(X)Qk = 0. 

Then the Qk form an orthogonal family as well, with nonnegative weight p(x) which 
satisfies p(x) -* 0 as x -* a, b. In this paper we focus exclusively on the classical 
orthogonal polynomials, i.e., the Jacobi (special cases of which are the Chebyshev, 
Legendre and Gegenbauer polynomials), Laguerre and Hermite polynomials, which 
are the only polynomial solutions of Sturm-Liouville problems of the form (2) [14]. 
We will assume that the functions under consideration possess sufficient differentia- 
bility properties over (a, b) and can be expressed as a series involving the Qk. See 
[5] for a discussion of the convergence properties in the relevant function spaces. 

We introduce the spaces Qn by 

QMnspan{Qkim< k < n}. 
Our method constructs an approximate particular solution of (1) in a subspace of 
codimension n (e.g. (Qn-l)') such that when nth-order differentiation is restricted 
to this subspace it has a simple inverse. We also require that L be invertible when 
restricted to this subspace and that T has full rank when restricted to the space of 
solutions to the homogeneous problem ((1) with f = 0). 

Of key importance for our purposes is the requirement that differentiation or 
its inverse ('integration' in an appropriately restricted domain) must have banded 
form. For example, the first derivative operator in the Chebyshev representation, 
D has elements 

O, i >j, 
1 

D ) O, i<j, i +j even, 
2 j, < i < j, i+ j odd, 

i i, i=O, j odd. 
Its inverse, when respective domains and ranges are appropriately restricted, is 

given by 
O O 0 .. * ... O 
2 0 -1 .. ... ... 

B= 2 1/2 0 -1/2 ... 0 . 2~~~i/ 

0 0 0 1/k 0 -1/k .. 

Now, DB = IQo while BD = IQ-. Clearly, DkBk = IQO as well. However, 
BkDk # I. If we apply k-fold differentiation to an arbitrary function, all informa- 
tion about the first k coefficients in its Chebyshev expansion is lost. If however we 
restrict the action of Dk to the space Qk, then Bk is a left inverse provided its 
range is restricted to the same space. We introduce the notation A[k] to denote a 
matrix A with its first k rows set to zero. Thus, we have that Bk] Dk = IQ. . We 
note that these relationships carry over to finite truncations if we replace the last 
column of B and the last k columns of BRkk with zeros, since Dk : QN _ QN 

while BRk QN-k -> QN. It is easy to see that these simple inversion (integration) [k] 0 k 
operators originate in the recursions 

(3) Tk+1 Tk-1 =2Tk k, =1.... 

To =u , 11 = TO 
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T ll___ __ _ 2T " Tj1 T") +2 + Tk" T k 1 . 
4(k)+k2)(k+1) 4(k2-1) 4(k-1)(k-2) k X k1,.. 

To = O , / = O 0 2 4To, 

and so on for higher derivatives. Clearly, B and B 2 ] are the matrices of recur- 
sion coefficients for equations (3), (4), respectively. In the discussion we use the 
same symbol for an infinite-dimensional matrix operator and its finite-dimensional 
truncation, where the distinction is clear from the context. 

More generally, if {Qk(x)}o is a family of orthogonal polynomials, then a three- 
term recurrence for multiplication by the monomial x 

(5) S Qk+lak+l,k = XQk , 
k = 0, 1,. .. 

1=-1 

follows easily from the orthogonality of the Qk [19]. Since the Qk are orthogonal 
(with weight p(x), as is easily seen by integrating (2) by parts), they also satisfy a 
relation of form (5): 

(6) Ql+k+la(,)k =XQk k= 0,1,... 
1=-1 

Therefore, by differentiating (5) and combining with (6), we arrive at [8] 

(7) Qk+lbk+l,k = Qk k k= 0,1,... I 
1=-1 

which allows the efficient inversion of differentiation to all orders. The coefficients in 
(7) can be derived from those of the basic recurrence (5), which defines the family. 

The method we shall present in ?3, explained in detail for 2nd-order operators 
but not limited to them, relies on restricting the domain of D' to the subspace 
Qn= span{Qk}, thus ensuring the existence of a unique inverse. Throughout, 
we tacitly assume that the operator LN, the Nth-order Galerkin approximation to 
L, has rank N - n when acting on elements of Q . Thus, the problem of solving the 
resulting algebraic system for right-hand sides restricted to QN -n has a solution 
containing n free parameters. We moreover assume that the operator is nonsingular 
when restricted further to QN. Thus, the null space contains no element orthogonal 
to Qn-I. These assumptions are not as restrictive as one might at first expect. The 
method is most effective when the above problem needs to be solved repeatedly for 
several right-hand sides f and high accuracy is desired. This type of problem 
arises, e.g., when the Navier-Stokes equations are solved in a geometry in which 
the Laplace operator is separable, and the boundary conditions are periodic in all 
directions except one. Common examples are provided by the Laplace operator in 
various separable curvilinear coordinates, where expansions of smooth functions in 
terms of eigenfunctions of the Laplacian in the bounded direction do not possess 
good convergence properties. 

In ?3 we give some examples of the inversion of the Laplacian in some common 
geometries, including a disk and an annulus in cylindrical and helical coordinate 
systems. The use of the method for initial value problems is demonstrated through 
a study of the Airy equation, while the biharmonic equation, analyzed in ?4, pro- 
vides an example for a higher-order problem. Also considered is the Stokes problem: 
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here a coupled system of two second-order equations is studied with boundary con- 
ditions given for only one. The method is easily extended to cover this case. The 
Chebyshev polynomials are an especially important family, because of their optimal 
approximation properties as well as the applicability of the Fast Fourier Transform. 
Thus, most of our explicit calculations are carried out for Chebyshev-Galerkin ma- 
trices. In ?4 we carry out a detailed conditioning analysis for typical problems. It 
is found that if the leading coefficient mo(x) does not vanish in the interval under 
consideration, the method generically produces well-conditioned operators. Finally, 
in ?5 we discuss how to use rational mappings to stretch the coordinate system near 
points where the solution of a BVP exhibits rapid variation, thus ensuring a more 
efficient representation of the solution without sacrificing the speed of the method. 

2. RECURSIVE DETERMINATION OF DERIVATIVES 

Throughout, we assume that {Qk(x)} is a family of orthogonal polynomials in 
[a, b] with weight w(x), such that if u E C? [a, b] and if we set 

N 

UN =E ^Qk 
0 

with 
1 b 

Uk = hi u(x)Qk(x)w(x)dx , where hk =11 Qk IwI X 

Nhk 
a 

then the error 11 U - UN IIwN?? 0 faster than any negative power of N. This is for 
example true for the eigenfunctions of certain singular Sturm-Liouville problems 
[5]. 

We shall write DN for the restriction of the nth-derivative operator with respect 
to x on QN = span {Qk}jI. We adopt the notation 

00 00 

(8) DTku = Z iuQk Z12Qk, 
o o 

and we write UN = col(ui) E RN+1 (i = O, 1, ... , N). In the sequel we will drop the 
subscript N when the distinction between truncated and nontruncated expansions 
is clear. Also, as stated earlier, we shall write A[k] for a matrix A whose first k 
rows have been set equal to zero. 

We now prove the following theorem, which is a special case of Theorem 2.2, but 
because of its simplicity serves to explain ideas. In this form, the theorem applies, 
e.g., to the Legendre polynomials. 

Theorem 2.1. If the family {Qk(x)}O satisfies the recurrence 

( ) ~~~Q1+1 Q-1= (k)Qk I k = 0,1, ... 

with Q-1= 0, then 
^ 1 1. 

(10) ~ Uk?1 _ Ukl 1 
(10) f(k ?1) f(k 1) U-- k , k=1,2. 

Proof. Clearly, 
k 

Qlk+(X) = E f(m)Qm(x) 
m=O 

m+k even 
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so that 
00 00 

U = Z Qkk - EIiQk 
k=O k=O 

00 k-1 

- Z U?k E f (m) Qm 
k=O m=O 

m+k odd 

- S{< f(m) k Un + Qmr v 
m=O k=m+l1 

m+k odd 

and finally 
00 

m =f(m) 5 k 
k=m+l1 

k+m odd 

resulting in the recurrence claimed above. M 

Applying the formula of Theorem 2.1 repeatedly, we can derive similar recursions 
for the inversion of higher derivatives as well. For example, for D2 we have 

+2 -^2(f(k + 1) + f??(k-1)) 
f (k + 1)f (k?+2) k f (k + 1)f (k)f (k -1) 

? 
(k-)f (k-2) Uk k=2,3,.. 

The above formulae lead to simple algorithms for the computation of derivatives 
of functions expanded in terms of the Q's as well as for the solution of simple Initial 
(I) or Boundary Value Problems (BVPs). For example, the solution to the problem 

ux =g(x) , u(a) = a 

where 
00 

g(x) = 5 Qm( , 
m=O 

can be found in the form 

,ao gk-l gk+l k-1 21. ?k f I(k -I) -f(k, I) , 1,.. 

while 

uo= (a - - ti Qm(a)) /Qo(a). 
m=l 

Other simple linear BVPs of the form 

Lu=9 , Bu=l 

can be solved efficiently by the inversion of banded matrices if the differential op- 
erator L has constant coefficients. For example, let 

(12) L=_d ?2+ 
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In order to solve the BVP (12) with boundary conditions 

(13) u(a) = a , u(b) = 0 

numerically, by assuming a truncated expansion for u(x) of order M, we set 

,a2 = A2 Uk-9 k k 
- gk 

in Eq. (11) for k = 2,.. , M to get, together with the r-conditions 
M 

Zio Qm(a) = a 
m=O 

M 

EZio 
Qm(b) = 

m=O 

an almost pentadiagonal system (except for the first two rows, which are full) for 
the coefficients uit. This can be easily solved by LU decomposition. Thus the 
-r-conditions are viewed as the first two equations, followed by the first M - 1 
recurrence relations for the determination of the Uio k = 2k ... I M with -io 

9k = 0 , k > M. This is equivalent to the usual way of stating the 'r-method [12]. 
An alternative approach is suggested here. We specifically look for null vectors in 

theform ek =Qk+Uk Uk e (QO )' k k=1,...I,nt-1. Then,ifu p( 
is a particular solution, the solution to the BVP can be written as u = up + E ak ek, 

with ak satisfying an n x n system. Note that if repeated solution of the system is 
required with different right-hand sides, the Uk need only be determined once, and 
there is a slight reduction in computational overhead of our method when compared, 
e.g., with an efficient implementation of the -r-method. In fact, our method can 
effectively optimize the conditioning of a problem by restricting attention to the 
most stable subspace. So, for example, if one is required to solve the Poisson 
equation Au = -g in a region Q, where Q is a 2-(3-)dimensional rectangle with 
one (two) periodic directions and one bounded direction several times by adopting 
a Fourier-(Fourier)-Q expansion, the problem decomposes to equations of type (12) 
in the bounded direction for each Fourier mode. The LU decomposition can be 
performed in a preprocessing stage and the results stored, resulting in only (1OM) 
operations per solution per Fourier mode at all subsequent stages. The cost is 
thus comparable to solving the Poisson equation in the pure Fourier case! Similar 
results can be easily derived for other ordinary differential operators with constant 
coefficients. 

A straightforward generalization of the previous formulas, which is useful in 
deriving properties for the Chebyshev polynomials, follows [8]: 

Theorem 2.2. If the family {Qk(X)} I' satisfies the recurrence 

(14) E,Qk+lbk+,k = Qk k =QO, 1, ... 
1=-1 

with Q-i 0, then, if f (x) = E?=0 fkkQk (X) is a sufficiently differentiable function, 
there holds 

1 

(15) fko) = S bk,k+lfk+l, k = 1, 2, 
1=-i 

where the Ith derivative of the function f (x) has expansion coefficients f'M). 
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Thus, even in this more general case, the expansion coefficients of a function can 
be calculated from those of its derivative in O(N) operations. The more general 
form in Theorem 2.2 will be useful dealing with Chebyshev polynomials, for which 
it agrees with the usual normalizations. The proof is straightforward, but we give 
it for completeness. 

Proof of Theorem 2.2. We can introduce the vectors 

and 

qx=(QoQl I...) Iq, (Q IQ1 **.) 
Then, f(x) = qxf and fl = ql f. Also, by assumption, ql B = qx, where B is the 
coefficient matrix for recurrence (14). Combining, we find 

q/ (f-B! (1)) = O. 

Assuming that the Qjk), i = 1,2,..., are independent (true for all families that 
satisfy Eq.(5) ), we find the relation claimed. [1 

We note that the Chebyshev polynomials in the standard normalization satisfy 
(14) with bk,k?l = (?1)/(2(k ? 1)). Also the Jacobi polynomials in their standard 
normalization satisfy a relation of type (14). Strictly speaking, Theorem 2.1 applies 
only to the Legendre polynomials (although we can scale the symmetric Jacobi 
polynomials so that (9) applies). In any case, (14) shows that integration is always 
banded, and of a simple form (the recurrence coefficient matrix) for all the classical 
orthogonal polynomial families. The discussion following Theorem 2.1 was given to 
clarify ideas, and in principle could have been omitted. 

We now focus on the operator D. This operator has a one-dimensional null space, 
and if appropriately restricted, it has an inverse. An especially useful restriction 
involves the subspace Q . In this space, the operator D has a well-defined inverse, 
which we will denote as B. Although D has a full upper triangular matrix rep- 
resentation, B is banded. Indeed, assuming the recursion in the form of Theorem 
2.2, we have that B is the coefficient matrix for the recurrence (14) (note that this 
matrix had zeros in the first row since QO = 0). 

Similarly, D' must be restricted to Qn. Indeed, gV(Dn) = Q'-', so that the 
operator D' is nonsingular on Q?, the orthogonal complement of its null space, and 
it has a unique inverse, denoted Bn] QO - . Q?n Any two images of an element 

z E Q? under n-fold integration differ by an element of Qo1-. The specific form 
of Bn] fixes that element of Qn-1 to be the zero element. Thus, the solutions of 

n 
(16) Lu = Z(mnnk(x)D k)u = f(x) I u EQ 

k=O 

and 
n 

(17) Lu = Z(mnnk(x)DkB[]) Z = f(X), z E Q, 
k=O 

are equivalent. Clearly, DkBn] 7? Bn-k. These operators differ since the second 
matrix has zeros in its first n - k rows while the first has some nonzero elements 
there. 
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Example . The operator B2] Q: -* Q2 (for families that satisfy Theorem 2.1) 
is 

o 0 0 0 .. 0 0 
o 0 0 0 .. 0 0 
1 0 l f 0 1 0 

B2] = | fofi ? f3f2fl ?+f f3f4 . 0 | 

fl f2 f2 f3f4 ff .. 

O O ** 0 * 0 
o o O . . . 1 _ fk-1+fk? o 1 

fk-2fk-1 fk-1 fk fk+1 fk+1 fk+2 

and using 

0 fo 0 fo ... 0 fo ... 

D ... .. fi O ... 

0 * - * 0 f2k-1 0 .. 

o 0 .. ... *-- *-- 0 f2k *-- I 
we find that 

1 fl f2 
1? 

f 

0 -0 0 

B[1] vDB2] =( f? -3 
0 

O * * * ? 
fk-1 

? 
fk+1 

In the general case, the operator D is hard to write explicitly, as it is the 'inverse' 
(in the sense discussed above) of a general tridiagonal matrix. However, all that is 
needed in our method is the expression for DkB' ], which is identical to the matrix 

Bnk~~~~~~~~~~~~~~~~[ 
B[n-k] except for the first n - k rows which, in general, will contain some nonzero 
elements. These elements are easy to compute however, as they can be expressed 
in terms of elements of B[i] and the n x n principal submatrix of D. For example, 
the operator DB 2 for the general case is identical to B[l] except for the first row, 
whose elements are 

rowo (DB[21) =-do, (blob,,, b 1 + bl2b2l,bl2(bll + b22), bl2b23, O,... ,O) 

Here, the elements bij for the classical orthogonal polynomials can be found in Table 
1, together with the elements of the matrix A and other relevant quantities using the 
standard notation [1]. Also, do1 is the corresponding entry of the differentiation 
matrix D, which is simply the derivative of Qi expressed in terms of Qo. For 
example, for the general Jacobi polynomials, do, = (ae + ,B + 2)/2, etc. 

The relations for the Gegenbauer polynomials Cn') can be constructed from those 
of the Jacobi polynomials since 

cM>- F_( + 1)F(2a + n + 1) p(cQ) 
n 

r(a + n + 1)]F(2a + 1)n 

where ae = i - 1/2. Arrays are indexed from 0 to N, the maximum order of 
truncation. 
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+ 
+ 

cq Q7)- 
r-- 

+ cq + + 

+ QC)- QC)- 

cq 

+ + 
+ 

cq Qc 
cq + + + 

,ze 
--, -e 4e + Q!:- 4e 
cq 

cq 
+ + C"l 

+'C"l 
ce 

cq c"I t C'l 
+ 4e 

+ 11-1 t Q7)- + Q7)- 

-k 
-k C'I 

+ + + cq cq 
cq cq -%e t + 

C"l C"l It t 
+ cq + 
4e 4e cq 

cq 

C', + + 

C"l 1-k 4e 
cq cq cq cq 

to 

cq cq 
cq cq 4e 

+ cq 

-%e H 

cq 
cq cq 

Se 

+ 

+ 

ce C"l 

-Sa 

cq cq Se 

C"l + 4e 
cq 4e 

cq 

cq 
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3. THE METHOD 

We present now a method for the efficient inversion of operators resulting from 
the spectral solution of the ODE 

n 

(18) lU = E(mn-k(x)Dk)u = f(x) , x E Q = (a,b), 
k=O 

subject to the constraints 
Tu = c. 

The constraints are represented by a linear functional T of rank n. 
We assume now that the matrices Mk, representing multiplication by mk, are 

banded. This is for example the case if the original DE had rational coefficients. 
After multiplying out the denominators, we are left with low-order polynomial co- 
efficients, and as a result of the simple recursion operator A of multiplication by the 
monomial x (5), these have banded representations as convolution operators. The 
simplest form is found if we expand the resulting polynomial coefficients in terms 
of the Qk, then exploit the properties of the banded operators of multiplication by 
Qk. In constructing an approximate solution, we look for a solution of 

LNUN = fN ; UN E QN, fN E QoN, 

with LN the Galerkin approximation to L, as usual [12]. The main result can be 
expressed as follows: 

Theorem 3.1. Assume that the Mk are banded. Also assume that QN = AK(LN)eD 
QN. Then, if there is a solution UN, it can be written as a combination of an 
element w E A/(LN) and an element up E QN such that LNUP = f. The solution 
of the latter problem can be performed in 0(N) operations. 

To construct the particular solution, let z = Dnup E QN-n so that up = Bnz 
QN is uniquely defined. Then the equation can be rewritten 

n n 

(19) L(Mn-kDk)UP = S Mn-kDkB[n]Z = F, 
k=O k=O 

where we have introduced Up, Z, F to represent the vectors of expansion co- 
efficients. (We use the same notation, however, for the differential and integral 
operators as for their matrix representations.) Since a solution up of this problem 
was guaranteed to exist, z, its nth derivative, exists as well. Here we must note 
that in the case of weak solutions the highest derivative must be handled carefully, 
but in this case convergence would be slow and the method would be impractical. 
Now we address our main question: Is the new system any easier to solve than the 
original? This is clearly true: the integration operators are all banded, and to find 
u from z we perform one more banded matrix multiplication. To simplify the nota- 
tion, in the rest of the paper, unless otherwise stated, we will write Di-n = D-[nnJn 
j = 0, ... , n-1, where n is the order of the differential operator under investigation. 

Finally, we need to determine a convenient basis for the nullspace of the operator 
LN. We define 

ek=Qk+Wk WkE QNn 

with 
LNek = 0 X LNWk = -LNQk. 
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Then 
n-1 

Tu = Tup + E akTek = C 

k=O 

so that, when the numbers Tkl = (Tek)l are found, we have 
n-1 

E akTkl = Cl- (up)l. 
k=O 

In other words, for every new right-hand side we simply need to solve the standard 
BVP for up, then evaluate the quantities (Tup)l and solve an n x n system for the 
ark. The condition of this system is known in advance. 

Example . The radial Laplace equation for the nth Fourier mode is 

(x +a) 
a 

(x + a) a -nu=f , uE Q2. 

This leads to the pentadiagonal matrix 

(x + a)21 + (x + a)D1 - n2D-2. 

Example . The helical Laplace equation for the nth Fourier mode is 

r n 
-rArl 2 2 arU - 2 U= f 

This is transformed to the (almost nine-diagonal) matrix 

r2(I + r2ae2)I + r(1 - a2r2)D1 - n2(1 + ab2r2)D-2 

Example . The initial value problem for the Airy equation, 

/ - a'3(x - XO)y = 0 , y(O) = .355029403792807, y'(0) = .258819403792807ae, 

has the solution 
y(x) = Ai(at(x - xo)), 

the Airy function of the first kind. Here we include the parameters ae, xo E [-1,1] 
in order to scale the interval over which the problem is solved, since Chebyshev 
expansions apply naturally over the interval [-1, 1]. For x > 0 the solutions decay 
exponentially and the numerical algorithm converges rapidly. However, for x < 
0 the solutions exhibit oscillatory behavior with ever increasing frequency, and 
convergence can only be achieved if sufficient modes are included to resolve the most 
rapid oscillations present. In Figure 1 we show the solution to the problem with 
xo = -1, or = 10 with N = 30,40, respectively. The first case is underresolved, and 
the maximum absolute error is O(10-2), while the second case is barely resolved, 
and the error is 0(10-5). A slight increase in the order of truncation improves the 
solution dramatically. With N = 64, the error is already less than 10-11. 

Example . The two-dimensional Stokes problem is expressed by the system 

(20) AN / =-X, 

(21) Hw=f v 

where AN is the nonperiodic part of the Laplacian for the mth Fourier mode in 
a two-dimensional geometry with one nonperiodic and one periodic direction; like- 
wise, H is a second-order linear operator with rational coefficients. No conditions 
are given on w while b and ox are specified at x = ?1. Such a system results, e.g., 
from the time discretization of the Stokes equations in appropriate two-dimensional 
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FIGURE 1. Computed solutions with 30 modes (triangles) and 40 
modes (circles) are plotted versus the exact solution of the Airy 
equation for a = 10 

domains. We consider projections f -+ fN-4 E QN-4, w -* WN2 E QN-2 and 
-+ 'ON E QN. We determine a particular solution for (21) as wp E QN-2 and 

homogeneous solutions Wk = Qk + Qk, k = 0,1, with Qk E QN-2. The general 
solution for (21) is then 

(22) WN-2 = CUp + aowo + awii. 

The general solution of (20) can now be written as /N = op + 0f0l + 31/'1, where 
1/k = Qk +Pk+2, k = 0,1 (with Tk+2 E QN) are the homogeneous solutions and 

f= ''p + coI'Fo ? al['l E QN is a particular solution with ANIp = -wp and 
ANIk = -Wk, k = 0,1. The boundary conditions can now be applied to /N to 
produce a 4 x 4 system in the ak, /k, k = 0, 1: 

AC= 

with 

Al,j+l = j (1), A2,J+1 = j (- 1) 
A3,J+1 = tF,X(1) A4,J+1 = 'j,x(-l) 

(j = 1, 2,3,4), so that A need only be evaluated once, Jk+1 = ak , k = 0, 1, and 
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cTk+3 = , k = 0, 1, and ?b1 = 4(1) - lp(1) etc. If this problem is solved as part of 
a time integration of the Navier Stokes equations in a two-dimensional region, the 
only functions that need to be computed repeatedly are p E QN and wp C QN-2. 

Finally, we comment on the solution of the BVP with arbitrary BC. In this case, 
we need to determine the null space, and add an arbitrary combination of nullvectors 
to the particular solution to satisfy any desired BC. An alternative form of our 
method can also be considered. It is based on commuting the polynomials with 
the differential operators and multiplying on the left by the integration operator 
Dni so that the differential operator matrix becomes banded. This approach is 
discussed in [8]. This is in fact the T-method, and various instances that have been 
worked out (e.g. [12, 9]) are of this type. Theorem 2.2 establishes the success of 
this approach as a consequence of the basic recurrence relation (14). 

However, other preconditioners may be available, depending on the special struc- 
ture of the matrix operator LN [18]. The present method's main appeal, besides 
the fact that a convergence analysis is available (see ?4) is its simplicity and gener- 
ality. Indeed, the complicated expressions for the differential operators are entirely 
avoided. Of course, it should be expected that in special cases simpler forms and 
preconditioners might be possible. An example of this is provided by the Laplace 
equation in a circle, for which the integration preconditioner leads to pentadiagonal 
forms while a simpler tridiagonal form is in fact possible [18]. This is related to the 
special properties of the operator (x + 1) d . We have not yet explored the flexibility 
of the choice of spaces, which may sometimes lead to more efficient algorithms. 

4. STABILITY AND CONVERGENCE 

As differential operators are unbounded (in the usual norms), so are their dif- 
ference and spectral analogues under mesh refinement. Numerical studies have 
shown that the spectral radii of Chebyshev and Legendre differentiation matrices 
are O(N), where N is the dimension of the subspace. Moreover, these matrices 
are far from normal, so that their norms can grow even faster. For example, the 
maximum norm of the differentiation matrix, D, for a family satisfying the simple 
recursion (14), such as the Legendre polynomials, satisfies the lower bound 

(23) HIDIloo > maxf(m) 2 m<N 2 

From Table 1 we see that f(m) = 0(m), so that the lower bound above is O(N2). 
This lower bound grows accordingly with the order of the derivative being approx- 
imated. (For example the second derivative can behave as o(N4).) 

The poor conditioning of the matrices arising from spectral discretizations both 
limits the accuracy of solutions, owing to roundoff errors, and imposes severe lim- 
itations on the time step for explicit solutions of dynamic problems [17] or on the 
convergence rate of iterative solvers. It is well known that the reformulation of 
differential equations as integral equations often leads to bounded operators and 
well-conditioned problems. As our formulation of the discrete equations is based 
on integral operators, we also expect to obtain well-conditioned linear systems. 
For some constant-coefficient problems, Greengard [13] has directly analyzed spec- 
tral approximations to equivalent integral equations and demonstrated the gains 
in accuracy which can be attained. In this section we generalize and expand on 
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Greengard's results to cover the algorithms we have proposed. We use the stability 
estimates we obtain to prove convergence of the method. 

4.1. Estimates of the condition number. We assume the differential equa- 
tion takes the form (18) where the coefficients mj(x) are polynomials and mo is 
bounded away from zero on [a, b]. Of course, this last condition is required to avoid 
singularities in the solution, where the spectral approximation itself may not be 
well behaved. We concentrate on the system (19), used to determine a particular 
solution 

(24) (Mo + ? MD-J) Z _ AZ = F 

where the Mj are the Galerkin approximations to multiplication by the polynomial 
coefficients and D-i = Dn-hBTnh. The additional problem to be solved, involving 

[in]I 

the boundary conditions, will be of much lower dimension, and its conditioning 
will depend on the specific constraint conditions. We begin by estimating various 
norms of the integration operators. We view these, now, as operators on 12 and 
lo. The bounds we derive obviously extend to finite truncations. We make the 
following assumptions about the orthogonal family, which are satisfied for proper 
normalizations of any of the Jacobi polynomials, as well as the Hermite polynomials 
(see Table 1): 

Assumption 4.1. The orthogonal family Qk satisfies 

(25) SUPk(Qk, Qk)wa= 2 

(26) Ibkjl?a p>O 

Here, (, )w denotes the weighted inner product defining the family. The best 
exponent, p, is 1 for the Jacobi family and 1/2 for the Hermite family. 

(To use Table 1 to verify the statement concerning p, form the normalized families 
by dividing Qk by h/k and note that bkj is transformed to bkj 7hk4/h.) We have 
the following lemma, describing the structure of the integration matrices: 

Lemma 4.1. The matrices D-j, j = 1,... , n, are banded with bandwidth j, with 
the possible exception of a finite number of elements in the first j rows, and there 
exists a constant Bj such that (D-j)kl < Bjk-3P. 

Proof. We first note that the integration operator B n = D-n coincides with (B11 )n 
except for the first n rows which are zero. Since B1 is tridiagonal with elements [1] 

satisfying (26), the result is immediate. For the other terms we use the fact that 
DB1 = I to write 

[1] ~ ~ n 13+Dn3C (27) D-i = D-3B In] - D-j3((B ,)n + C) = (B[l')i + DT3C, 

where the nonzero elements of C are simply the negatives of the nonzero elements 
of (B[',)n in the first n rows. Since Dn-i is upper triangular with nonzero elements 

only in superdiagonals n -j to oo, we see that the nonzero elements of D (n-j)C are 
restricted to the first j rows and 2n + 1 columns. Since the result holds for (B[J )3, 

the lemma is proved. FI 
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This leads immediately to the following theorem: 

Theorem 4.1. For r = 2 or r = oo, the operators D- : 1, - 1r are compact. 

Proof. The boundedness of the infinity norm follows directly from Lemma 4.1 and 
the fact that the norm is equal to the maximum absolute row sum. For the 2-norm 
we have 

/ ~~~~~~~~21/2 
oo max(2n+1,i+j) 2) 

D-3y112 = |(D-j)y 
Vi=1 1=max(1,i-j) 

/ oo max(2n+1,i+j) 1/2 

(28) < 2n+1Bj E E ly 12 
i=1 l=max(1,i-j) / 

< (2n + 1)B3j IIYII2. 

To prove compactness it is sufficient to show that D-i can be approximated by a 
sequence of bounded operators of finite rank, {D -3}. For these we simply take the 
operators defined by setting all rows below M to zero. Repeating the arguments 
above we have, for r = 2 or r = o0, 

(29) -D-j-D7jfr < (2j + 1)BjM-jP-3 0, M oo, 

completing the proof. D:1 

We would now like to bound the norms and condition numbers of the Galerkin 
polynomial multiplication matrices, Mk. We begin by showing that the Galerkin 
matrix representing multiplication by an arbitrary polynomial, O(x), is nonsingular 
if the zeros of 4 lie outside [a, b]. 

Theorem 4.2. Let '1 be the matrix representation of the Galerkin approximation 
to multiplication by the degree-q polynomial d/(x) relative to the orthogonal system 

{Qj (x)}' on [a, b]. If the zeros of b lie outside [a, b], then 1 is nonsingular. 

Proof. Suppose the contrary. Then there exists a nonzero polynomial, ,a, of degree 
N such that Ott = EN+, ckQk(x). We then have that qu is orthogonal to all 

polynomials of degree less than or equal to N and has at least q zeros (counting 
multiplicities) outside [a, b]. This implies that 0b[t has at most N zeros of odd multi- 
plicity in (a, b). Let ri, i = 1,.. ., s, denote these zeros. Then 'e/(x) = HI=1 (x-ri) is 
a polynomial of degree less than or equal to N such that qtr4 is of one sign on [a, b]. 

However, we also have f wq,t/dx = 0 by the orthogonality of q[t to polynomials 
of degree not more than N. This is a contradiction, so ,u cannot exist. 

An immediate corollary of this theorem is: 

Corollary 4.1. The spectrum of ? is contained within {y = o(x), x E [a, b]}. 

Proof. Suppose 4D - Al is singular. Since 4D - AI is the Galerkin approximation to 
multiplication by $ - A, we conclude X - A must have a zero in [a, b], completing 
the proof. El 

From the eigenvalues we can easily bound the norms: 
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Theorem 4.3. The matrix, D, satisfies the following bounds: 

(30) 11@I12 < KQ max 1q5(x)j, II@ 112 ? KQ max 1(1/0(x))J. 
xe[a,b] xe[a,b] 

Proof. Let 4D denote the matrix representing the Galerkin approximation to multi- 
plication by q relative to the orthonormal basis obtained by normalizing the Q's. 
Since 4$ is symmetric, its 2-norm and the 2-norm of its reciprocal are bounded, 
respectively, by the largest and the inverse of the smallest eigenvalues (in absolute 
value). These are in turn bounded by maxxE[a,b] q5(x)j and maxxE[a,b] j(1/q$(X))j 

from Corollary 4.1. Let R = diag(\/(Qi, Qi),) Then 4D = R-1bR. Taking norms 
yields the final result. [I 

We have shown that the system defining the particular solution has the form 
MO+K, where, for regular problems, Mo has a bounded condition number uniformly 
in N, and K approaches a compact operator. To complete our analysis, we must 
develop lower bounds on Mo + K, which can only be expected if the homogeneous 
differential equation admits no nontrivial solutions in (QO1)I. We make this 
explicit in the following assumption. 

Assumption 4.2. If w is a solution of the homogeneous problem ((18) with f = 0) 
satisfying (w, Qk)w = 0 for all k = 0, . .. , n - 1, then w = 0. 

We remark that the existence of a nontrivial solution of the homogeneous dif- 
ferential equation which is orthogonal to all polynomials of degree less than n is 
clearly not generic. If it holds, the difficulties with the method can be remedied 
by looking for particular solutions in a different subspace. In the future we plan to 
consider the case of singular problems in more detail, particularly in cases where 
the lead coefficient is zero somewhere in [a, b]. 

We now define the operator K :12 -+ 12 by 

(31) (ky) = h1 KQki (mo)1 mj ( (D y), Qi) K 

We then have: 

Lemma 4.2. The operator k is compact and, if Assumption 4.2 holds, (I + k)-1 
is bounded. 

Proof. The proof of compactness again follows by approximating D-i by DMV. If 
kM denotes the resulting approximation to k, it is clear that KM is bounded and 
has finite rank. Moreover, as M -x 00, 

(32) 

1l(K - kM)YI12 ?< niQ max (imrax m 1(x)mj(x)l) fl(D-j-D7j)j|2jjYj2 -?0. 

Therefore, k is compact. By the Riesz-Schauder theory the boundedness of 
(I + K)-1 holds if and only if (I + k)z = 0 has no nontrivial solution in 12. 
Suppose such a solution exists. Let w = D-nz, w = Z%I0 WkQk. Then we can 
write 
(33) 

n 

Lw = mo(1 + m_1 ZmjD )Dnw = mo (Qk ((I + K)Z)k) = 0 
j=1 k 



628 EVANGELOS A. COUTSIAS, THOMAS HAGSTROM, AND DAVID TORRES 

That is, w is a weak solution of the homogeneous problem in (QO-), with n 
derivatives in Li,. By repeated differentiation and use of the fact that mo is bounded 
away from zero, we establish that arbitrary derivatives are in L. . Since w is bounded 
above and below in arbitrary closed subintervals of (a, b), Sobolev's inequality im- 
plies that w is a classical solution, violating Assumption 4.2. This completes the 
proof. O 

We are now in a position to uniformly bound the condition number of A. 

Theorem 4.4. Suppose Assumption 4.2 holds. Then there exist constants Co and 
C1 and an integer No such that for all N > No and vectors y with Euclidean norm 
1, 

(34) Co < //Ayj/2 < Cl. 

Proof. The finite system can be written in the form AN = MO,N(I + KN), where 

n 

(35) KN = MOjZ E Mj,NDD 
j=1 

Here, the subscript N indicates that the degree-N Galerkin approximation is being 
considered. The existence of the uniform upper bound, Cl, follows from Lemmas 
4.1 and 4.3. To deduce the existence of the lower bound, we define KN :12 - 12 by 

(36) (kNY)k = {KNYN)k N k-O, ... ,N, 

Here, YN is the (N + 1)-vector formed from the first N + 1 components of y. Let 
e > 0 be given. We will find N(e) such that IKN - KII < e for N > N(e). Given 
any element, y, of 12 with norm 1 and any M > 0, set y = YM + XM, where only 
the first M + 1 components of YM are nonzero and the first M + 1 components 
of XM equal 0. For M sufficiently large, independent of y and N, the estimates 
in the proof of Lemma 4.1 imply that IIKNXMI, IIKxMII < e/4. Moreover, for 
N > M + n + q, where q is the maximum degree of m., j = 1,... ,n, we have 

(37) 
n M+j n M+q+j 

s(x) =Zm(x) ( Ej(DjYM)jQj(x)) = E (Mj,NDN/YM)iQi(x)- 
3=1 i=O j=l i=O 

Set e = (KN - K)yM and let e =e- + e, where e is nonzero only in the first N + 1 
components and the first N + 1 components of e are zero. Note that 

(38) ek=-hk-(Qk,mO1S)w, k>N+1. 

Denote by S the vector of expansion coefficients of s, recalling that all components, 
Sk) are zero for k > M + n + q. Then, treating vectors whose nonzero components 
have index no greater than N as N + 1 vectors, we obtain 

(39) MO, Nx = S-MO,N(KYM)N. 

However, by the bandedness of MO, we have 

(40) S = MO,N,N+q(KYM)N+qi 
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where MO,N,N+q = (MO,N EN,q) is the rectangular matrix formed from the first 
N + 1 rows of MO,N+q. Therefore, 

(41) 

MO,Ne = (MO,N EN,q)(KYM)N+q - (MO,N O)(KYM)N+q = (O EN,q)(kYM)N+q. 

Hence, 

(42) le||1 = J(O Mj,jjEN,q)(KYM)N+qt ? JIMOJ}J * IIMO,N+qll * 1llll- 

Therefore, we have, for some constant C, 

(43) JJ(KN- K)yMll < Cll?ll. 

For fixed M the functions mU is as well as any of their derivatives may be bounded 
independent of YM, IIYMII < 1. Therefore, for any integer ,u > 0, standard approxi- 
mation results (e.g. [5, Ch. 9]) imply the existence of constants C(,u, M) such that 
the right-hand side of (43) is bounded above by C(,u, M)N-A. We may then choose 
N(E, M) sufficiently large that 

(44) max 11(KN- K)yMII <2 N> N(E,M). 
IIYMII?l1 2' 

We finally have, for M = M(e), N > N(E, M(e)) and IIYI = 1, 

(45) 11(KN -k)yYl ? I(KN -K)yMII + IIKNXMIl + ||KxMll <,6. 

By the Banach lemma, 

(46) l(I + KN)-1 11 ? I(I? + K)-Y111(l-J(I?K111)- 

for N > N(c) and c < (JJ(I + K)-111)-l. Since (I + KN)-1 is a block diagonal 
submatrix of (I + KN) -l it follows that J(I + KN) -1 I <11 ? (I + KN) -1 11. As we 
have uniform lower bounds on MO, the existence of Co follows, completing the 
proof. D 

4.2. Error estimates. Given these bounds on the condition number of the linear 
system, a convergence result is easily proved. We restrict attention to symmetric 
Jacobi (Gegenbauer) polynomials, where good results for interpolation have been 
obtained by Bernardi and Maday [4]. We explicitly assume that the original problem 
has the following properties: 

Assumption 4.3. (a) The constraint/boundary operators T satisfy an inequal- 
ity of the form ITwl < llwll,J. 

(b) The forcing function, f (x), is in Cr ([a, b]), r > 1. 
(c) If w is a solution of the homogeneous problem ((18) with f = 0) satisfying 

Tw = 0 or (w, Qk)w = 0 for all k = 0,... ,n-1, then w = 0. 

We now prove a sequence of estimates of various parts of the error. For the 
continuous problem, Assumption 4.3 implies the following (e.g. [7]): 

(i) There exists a basis, {lu3}j7" E CO ([a, b]), for the space of solutions to the 
homogeneous problem taking the form uj = Qj + ilj, with iij orthogonal to 

Qn-I. QOV 
(ii) There exists a unique solution, u E Cn+r([a, b]), which can be written u(x) = 

us (X) + Zj?n- cu3 (x) with us orthogonal to Qn-I 
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(iii) The n x n matrix 

Te=[ Tuo Tul ... Tun-_] 

is nonsingular. 

Let v, (x) denote the approximate particular solution, that is, the polynomial whose 
expansion coefficients are given by D-nz, and vj(x) denote the approximate solu- 
tion of the homogeneous problem taking the form Qj + v? with v? orthogonal to 
QOn-1. We assume that the right-hand side of the inhomogeneous equation is ob- 
tained via interpolation at the relevant Gauss or Gauss-Lobatto points. Let 

(47) Ta=[ Tvo Tv1 ... Tvn1 ] 

We then have: 

Lemma 4.3. There exists No such that for N > No: 
(i) There exist constants GI,,, such that 

11fz4) -v 'i ? Gi,,4N-4, 0 < 1, < 0, j = 0,... .,n- 1. 

(ii) There exist constants R., such that 

ITe-Tall < RA N-0, O < A < x. 

(iii) There exist constants Di such that 

11(l') -v(')lI, < D,N-r lfHw,r) 0 ?< I n. 

Proof. We rely extensively on the approximation results listed in [4] and [5, Ch. 9]. 
Now u?-v? = i^-i3 . Let i^ = iJ,N +zJ, where i(n) E QN-n and win) E Q?N-+ 
Then 

(48) ij -v? = (iij, N -V`) + wV 

Estimates of the last term and its derivatives follow directly from results on ap- 
proximation by singular Sturm-Liouville eigenfunctions and the smoothness of i. 

For the first, we rewrite the expansion coefficients as Bn[n1ZuJ,N and Bn]Zv, and 

introduce Ze,j = Zu,J,N - Zv,j. Let Zu,J,N = Zu,j,N+Q - EN+QZu,j,N, where Q is 
the bandwidth of the matrices A and E represents extension by 0 of a vector to 
a longer vector. Denoting explicitly by Am the matrix A associated with degree- 
(m + n - 1) truncations and by Pm the restriction of a vector of order larger than 
m to the m-vector containing its first m components, we have 

(49) AN-nZe,j = PN-nAN-n+QZu,j,N. 

By the properties of A we have 

(50) ||Ze,J 12 < CIIZU,J,NII2 

Now Zu,J,N can be estimated by derivatives of zij. Therefore, we have estimates 

of the nth derivative of the error in terms of the difference between ftln) and its 3 
projection into QN-n. FRom [5] we directly obtain the estimate in (i). For lower 
derivatives we simply apply the bounded operators D-2 to Ze,j. For higher deriva- 
tives we apply the derivative operators, which, though unbounded, still contribute 
only polynomial growth. To derive (ii), we use the estimates in (i) and assumption 
(a) on the constraint operators. 
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Estimates of the particular solution follow the same pattern. Introduce fN, the 
polynomial approximation to f used to compute v,, and fN, the orthogonal pro- 

QN-n. W 
. n) (n) (n)(ni) QNn (n) 

jection of f into QOfln Write u,= UsN + Ws , where u,,N E Q0 and w8 E 

QN-n+l Let the expansion coefficients of U,,N and v, be given by B nnZ8s,u,N and 

Bn ]Zs,v respectively. Let R., = Z.,v-Z8,u,N and Zs,u,N = ZS,U,N+Q-EN+QZs,u,N 

Then we have 

(51) AN-nRS = PN-nAN-n+QZs,u,N + FN - FN. 

From the boundedness of the A's, the first term can be estimated in terms of 
|W 1w = O(N-r) s !1w,r. (This holds because Us,N was constructed by pro- 

jecting u(n) into QjN-n and applying integration operators.) The second is bounded 
by Ilf - fNlIw + Hlf - fNiw = O(N-r)' Ilf 1lc,r. The boundedness of A-1 then im- 
plies (iii) for the nth derivative. The bounds for the lower derivatives then follow 
by application of the bounded integration operators. L1 

We are now in a position to prove: 

Theorem 4.5. For some No < oo there exist constants Hl such that, for all N > 
No, the difference between the true solution, u, and the approximate solution, v, 
satisfies 

11j(') - ) li w < HN`r1f jjw,r) I = O,... , n. 

Proof. We have 
n-1 

(52) u =us + Yjuj, Tey= c- Tu,s 
j=O 

n-1 

(53) v =Vs + E jvj, Tab = c-Tvs. 
j=O 

Introducing e = u - v, v -y - 6 and taking the difference of the equations above, 
we obtain 

(54) 
n-1 

e=us-vS+E(-yj(uj-vj)-vjtv), Tav= (Ta-Te),y-T(us-vs). 
j=0 

Applying estimates (ii) and (iii) of Lemma 4.3 and the Banach lemma to the second 
equation, we obtain lvl = O(N-r) llf K1w,r. Substituting this into the first equation 
and again using parts (i) and (iii) of Lemma 4.3, we obtain the desired result. D 

We note that the estimate for the nth derivative is of optimal order for finite 
r. Of course, for f E C' ([a, b]), we have convergence at a rate faster than any 
negative power of N. 

4.3. Direct computations of the condition number. Finally, we illustrate 
the conditioning results by computing the singular values of the matrix used in the 
numerical example in ?3, namely Airy's equation with a Chebyshev discretization, 

(55) A = I + a(3(X + 1)D-2. 

The singular values for various N and ao were computed using the lapack routine, 
dgesvd. The results are presented in Table 2. 
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TABLE 2. Extreme singular values for I + ai3 (X + 1)D -2 

11_ aa = 5 a= 10 J a = 20 
N | 1 I UN-1 I K2 |1 I UN-1 |1I2 T I TUN-1 Pi2 

32 46.3 .077 605 374 .007 53517 2992 .100 29891 
64 46.3 .077 605 374 .023 16015 2992 .042 71295 
128 46.3 .077 605 374 .023 16015 2992 .008 378611 
256 46.3 .077 605 374 .023 16015 2992 .008 378611 
512 46.3 .077 605 374 .023 16015 2992 .008 378611 
1024 46.3 .077 605 374 .023 16015 2992 .008 378611 

TABLE 3. Extreme singular values for I -aD4 

N o = I ] [= 100 Oa= 10000 

N 91 | (N-1 | 2 Orl I OrN-1 | K2 IJ O| I JN-1 | 1 
32 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 
64 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 
128 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 
256 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 
512 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 

1024 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004 

We see that the extreme singular values and, hence, the condition number of 
the system matrix are independent of N, once N is taken large enough to resolve 
the problem. (The large condition number for large ae simply reflects the large but 
bounded condition number of the integral equation.) To illustrate the insensitivity 
of this result to the order of the underlying differential equation, we have carried 
out the same computation for the biharmonic; that is for A = I - aD4, with the 
results tabulated in Table 3. 

Here, the results are quite independent of the truncation, as the extreme singular 
values are resolved with N = 32, so the only growth in the condition number is 
associated with the growth of ae. 

5. RATIONAL MAPS FOR LAYER RESOLUTION 

The Chebyshev approximation to a function with a region or regions of very rapid 
variation may exhibit Gibbs-type phenomena, that is large amplitude oscillations of 
the error, unless many basis functions are used. Therefore, adaptive computations 
using coordinate mappings to stretch these regions have been proposed. Bayliss 
and Turkel [3] have made a comparative study of various functional forms, all of 
which were transcendental functions. 

In order to be able to use our fast solvers, we consider rational maps. That is, 
we directly solve (1) in y-space, where 

(56) X = P(Y;' ) 

the polynomials P and Q are of low degree, and r1 is a parameter vector. In an 
adaptive procedure, r1 would be chosen to minimize some measure of the error, for 
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example the error functional proposed by Bayliss and coworkers [2]. A very simple 
construction of an appropriate map can be motivated in the following way: Let 
g(y) = P/Q. The convergence of the Chebyshev expansion (in y) depends on the 
behavior of 

(57) ddkU (dg) k d kU 

dyk dy) djXk?+ 

This suggests that improved convergence will follow from making dg/dy small where 
dkul/dxk is large. We imagine an underlying linear map (so that the limits of the 
computational region will be [-1, 1]) stretched near a finite number of points, x;. 
This can be accomplished by subtracting scaled and shifted multiples of the function 

(58) hs (y; a, 0, 3y) = l + y 

Note that h' (0; a, 4, a) = and that the derivative approaches zero as 3y2 -N 00. 

We then propose 

(59) g(y) = Sy + C-E hsy (Y-Yi; aj I pi 7,V) 

The number of terms in the sum, and, hence, the degree of the map and bandwidth 
of the resulting matrices, depends on the number of layers present. Then, if S - 

is small and /j is large, enhanced resolution at g(yj) will be obtained. 
We demonstrate the idea on the following simple boundary value problem: 

(60) d2 dx -=0 (?)=?1. 
dx 

This problem has the exact solution 

q(x) = 1+ j e-x2/(2E) dx 

which, for e small, exhibits a region of rapid transition near x = 0 whose width is 
Q(E-1/2). We see below that for e small, and even a large number of modes, there 
is a very strong Gibbs-like behavior. We consider the rational map 

2 A+y 2 
(61) X A+1Y1 +y2 

which is derived from the general expression above, making use of the symmetry. 
In particular, the derivative is minimized at y = 0 where its value is 2A/ (A + 1). 
Under the change of variables, O(y) = q(x(y)), the equation becomes 

d24' ((dx d2X dx do= 
(62) c dy + X( - Ekd2/dI 0, ~b4?1) = ?1. 

We studied this equation for various parameter values. We found that with 
e = 10-12, a value of the parameter A of the map of the order of 10-6 yielded 
the best results. This is reasonable, as one might expect A = O(Vfi) to match the 
scaling in the layer. We did not systematically search for the optimal value. In 
Figure 2 we present the solutions obtained for various numbers of modes, N, and 
mapping parameters, A. Note that A = 1 yields the identity map, i.e., the case of 
standard Chebyshev approximation. With A = 1 and N = 256 we see oscillations 
near the layer with an overshoot of about 18%. Increasing N to 32768, which was 
the largest value considered, had no effect on the amplitude of the overshoot, but 
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N=2S6, A-i N=32768, A=1 
Y Y 

l lI I I iI I _ 
1.20- - 1.20- 

1.00- - 1.00- 

0.10- - 0.10- 

0.60- - 0.60- 

0.40- - 0.40- 

0.20- - 0.20- 

0.00-- 4.00- 

0.20-- 0.20- 

4.40-- 4.40- 

4.60 - - 460- 

45.0-- 4.80- 

-1.00- - -1.00- 

1.20 - - 1.20- 
I II II XI I I I I l X 

41.00 4.50 0.00 050 1.00 .1.00 450 0.00 0.50 1.00 

N=64, A=10*6 N=1024, A=625X10**-5 
y 

1.10-I I . I I I.0- I I 

1.00 - 1.00- 

0.90- _ Q90- 

0.10- - 0.80- 

0.70- - Q70- 

0.60- - 0.60- 

030- - 030- 

0.40- - 0.40- 

0.30- - 0.30- 

0.20- - 0.20 - 

0.10- - 0.10- 

4.00- - 4 00- 

40.10 - - 4.10- 

4.20- - 42.0- _ 
4.30- - -030- 

4.40- - 4.40- 

.050- - 4.50- 

4.60- - 4.60- 

40.70- - 470- 

410- - -ao10- 

4.90- - 400- 
.1.00- - -1.00- 

..10- I I I I I-x -X1.10- I I I I I -X 

.1.00 .030 0.00 o I. -1.00 4.50 00 030 1.00 

FIGURE 2. Solutions for e = 1012 

did contract the region of oscillation. With A $7 1, on the other hand, we obtain 
reasonable results with many fewer nodes. For example, with A - 10-6 and N = 64 
the overshoot is less than 1%. Increasing N to 1024 and spending a bit more effort 
optimizing the parameter reduces this to 3 x i0-. 

It is clear that there is no change ]in the essential (O(N)) amount of work needed 
to solve the problem, although the bandwidth does increase by approximately a fac- 
tor of 5. If an iteration were used for the minimization of some error functional, by 
shifting the position of the shock and changing the magnification factors, each step 
would require the recomputation of the operator coefficients and the solution of the 
problem. These procedures are of comparable numerical cost, so that the desirable 
features of the method are essentially preserved under the change of variables. 

It is worth noting that there are limits to the capability of this method to concen- 
trate a large fraction of the mesh in a small region. A simple calculation indicates 
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that g'(y) = 0(e) in a y-interval of width . To achieve a greater magnification, 
one must use rational maps of higher degree, which results in larger bandwidths. 
A more detailed study of the properties of rational coordinate mappings is planned 
for the future. 
Note added in proof. The three-term recurrence relation for the derivatives of 
the Jacobi polynomials appears also in the recent review by Fornberg [10]. We 
would like to thank one of the referees for pointing out the paper by Bernardi and 
Maday [4], which allowed us to improve our convergence estimate for Gegenbauer 
polynomials. 
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